The weak isotropy of quadratic forms over field extensions
نویسندگان
چکیده
منابع مشابه
Isotropy of Products of Quadratic Forms over Field Extensions
The isotropy of products of Pfister forms is studied. In particular, an improved lower bound on the value of their first Witt index is obtained. This result and certain of its corollaries are applied to the study of the weak isotropy index (or equivalently, the sublevel) of arbitrary quadratic forms. The relationship between this invariant and the level of the form is investigated. The problem ...
متن کاملIsotropy over Function Fields of Pfister Forms
The question of which quadratic forms become isotropic when extended to the function field of a given form is studied. A formula for the minimum dimension of the minimal isotropic forms associated to such extensions is given, and some consequences thereof are outlined. Especial attention is devoted to function fields of Pfister forms. Here, the relationship between excellence concepts and the i...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملQuadratic Forms over Arbitrary Fields
Introduction. Witt [5] proved that two binary or ternary quadratic forms, over an arbitrary field (of characteristic not 2) are equivalent if and only if they have the same determinant and Hasse invariant. His proof is brief and elegant but uses a lot of the theory of simple algebras. The purpose of this note is to make this fundamental theorem more accessible by giving a short proof using only...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Manuscripta Mathematica
سال: 2014
ISSN: 0025-2611,1432-1785
DOI: 10.1007/s00229-014-0671-0